1 year ago
#356028
eatalot foryou
_forward_unimplemented() got an unexpected keyword argument 'input_ids'
I am training a model using HuggingFace Trainer class.(GPT2 text Classification) The following code does a decent job:
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True ,max_length=MAXLEN,
padding=True
)
dataset_train = Dataset.from_pandas(train_sp , preserve_index=False)
dataset_val = Dataset.from_pandas(val_sp ,preserve_index=False)
dataset_train = dataset_train.map(preprocess_function, batched=True,load_from_cache_file=False)
dataset_val = dataset_val.map(preprocess_function, batched=True,load_from_cache_file=False)
columns_to_return = ['input_ids', 'label', 'attention_mask']
dataset_train.set_format(type='torch', columns=columns_to_return)
dataset_val.set_format(type='torch', columns=columns_to_return)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer )
training_args = TrainingArguments(
output_dir="/content/Model1", #The output directory
overwrite_output_dir=True, #overwrite the content of the output directory
num_train_epochs=3, # number of training epochs
per_device_train_batch_size=16, # batch size for training
per_device_eval_batch_size=8, # batch size for evaluation
eval_steps = 400, # Number of update steps between two evaluations.
save_steps=800, # after # steps model is saved
warmup_steps=500,# number of warmup steps for learning rate scheduler
prediction_loss_only=True,
#remove_unused_columns=True
)
#---------------------------------------------------#
trainer = Trainer(
model=model1,
args=training_args,
#data_collator=gpt2_classificaiton_collator,
train_dataset=dataset_train,
eval_dataset=dataset_val,
tokenizer=tokenizer,
data_collator=data_collator
)
trainer.train()
I got error _forward_unimplemented() got an unexpected keyword argument 'input_ids'
what should I do?
pytorch
huggingface-transformers
huggingface-tokenizers
gpt-2
google-publisher-tag
0 Answers
Your Answer