1 year ago
#327641
mr17.5stuntman
how to to extend a dataframe that has date row index, from the last date in the dataframe till the end of the year? fill extended rows with nans
I have a CSV file that contains time series information from 1st January 2017 to March 8 2022.
What I'm trying to do is to create one a reusable function that can be used for different datasets (no hard coding of the parameters). The function should extend the given dataframe till the end of the current year. The extend rows should be filled with Nans.
Seceondly, replace the nan values of current year 2022 with data values of 2019 for matching index dates.
Thirdly, this operation should be done for all columns starting with the string T
. Meanwhile for all the other columns that don't begin with the string T
replace the nan values of the current year 2022 with data values of 2021 for matching index dates.
The output dataframe should have same number of columns as the original dataframe.
Below is an example of how the input dataset looks like: The date is a row index. There are 6 columns. I have also attached a screenshot of the tabular dataset. The dots (... or ..) just means there other values between the dates.
![enter image description here][1]
Teacher Torries Task Ego Money Workers
date
01/01/2017 22 12 22 11 45 87
... .. .. .. .. .. ..
... .. .. .. .. .. ..
31/12/2017 79 21 17 91 28 60
01/01/2018 77 01 05 11 20 72
... .. .. .. .. .. ..
... .. .. .. .. .. ..
31/12/2018 02 19 54 36 78 97
01/01/2019 55 86 33 14 29 17
... .. .. .. .. .. ..
... .. .. .. .. .. ..
31/12/2019 12 13 14 15 09 01
01/01/2020 78 45 25 10 30 98
... .. .. .. .. .. ..
... .. .. .. .. .. ..
31/12/2020 32 17 47 58 89 21
01/01/2021 78 45 25 10 30 98
... .. .. .. .. .. ..
... .. .. .. .. .. ..
31/12/2021 02 19 88 23 97 14
01/01/2022 77 01 05 11 20 72
... .. .. .. .. .. ..
... .. .. .. .. .. ..
08/03/2022 17 68 74 21 01 04
python
pandas
date
indexing
extend
0 Answers
Your Answer