1 year ago
#312882
Pavel
Why scipy.signal.convolve2d gives me the wrong answer? (convolation matrix)
I would like to convolve given matrix with kernel.
from scipy import signal
import numpy as np
matrix = np.array([[147, 52, 208, 210, 167, 41, 133, 83],
[63, 243, 255, 11, 220, 154, 97, 72],
[172, 116, 175, 169, 34, 196, 251, 248],
[157, 11, 1, 34, 240, 77, 93, 229],
[80, 140, 111, 16, 149, 216, 40, 57],
[105, 9, 127, 209, 168, 136, 218, 38],
[145, 95, 153, 28, 198, 24, 42, 206],
[242, 110, 106, 62, 70, 158, 45, 30],
[116, 42, 166, 210, 199, 122, 88, 111]])
kernel = np.array([[-1.0, 0.4, -0.4],
[-0.4, -0.9, -0.1],
[0.2, -0.2, 0.8]])
signal.convolve2d(matrix, kernel, mode="valid")
The right answer should be:
right_answer = [[-327.6, -257.2, -296.3, -193.6, -271.7, 10.3],
[-228.5, -337.0, -378.7, -82.0, -305.3, -293.1],
[-191.6, -103.7, -37.8, -324.9, -212.0, -251.4],
[-201.3, -38.1, -39.1, -13.9, -323.6, -245.5],
[1.2, -230.0, -236.5, -306.0, -221.6, -316.0],
[-199.8, -169.9, -152.0, -263.2, -287.4, -85.4],
[-227.0, -47.4, -175.8, 37.8, -294.1, -100.7]]
But convolve2d
returns wrong answer.
wrong_answer = [[-375.6, -361.6, -2. , -367.9, -233.6, -334.7],
[-198.2, -129.1, -164.2, -124.9, -273.8, -449.1],
[ 36.4, 48.4, -200.7, -245.4, -105.5, -154.2],
[-220.2, -266.7, -178.3, -379.9, -260.9, 3.2],
[-184.2, -110.6, -400.6, -156.3, -254. , -247.6],
[-212.4, -198.4, -113.9, -184.6, 82.8, -125. ],
[-233.6, -240.6, -119.4, -271.2, -124. , -140.9]]
One more interesting thing. Before this I tested another example with convolve2d
. And in this situation the answer was right! This example was:
example_matrix = np.array([[1, 2, 0, 3, -2, 1, -1],
[0, 1, 0, 2, -1, 1, 1],
[2, 0, 1, 1, -1, 1, 0],
[3, -1, 2, 0, 1, 0, -1],
[2, -2, 1, 2, 2, 0, -2],
[-1, 1, 0, 0, 0, 1, -3],
[0, 0, -1, 2, -1, -1, 0]])
example_kernel = np.array([[0, 1, 0],
[1, 3, 1],
[0, 1, 0]])
example_answer = signal.convolve2d(matrix, kernel, mode="valid")
And example_answer
was right!!!
example_answer = [[ 5, 4, 9, -3, 5],
[ 3, 6, 5, -1, 3],
[ 0, 7, 6, 4, 1],
[-3, 5, 9, 9, 1],
[ 0, 1, 4, 2, -1]]
I don't understand, why in example convolve2d
returned the right matrix, but in given matrix and kernel it returned the wrong answer. What is the problem? Please, help me.
python
scipy
conv-neural-network
convolution
0 Answers
Your Answer